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SUMMARY 
In a recent paper Gresho and Sani' showed that Dirichlet and Neumann boundary conditions for the 
pressure Poisson equation give the same solution. The purpose of this paper is to  confirm this (for one case at  
least) by numerically solving the pressure equation with Dirichlet and Neumann boundary conditions for 
the inviscid stagnation point flow problem. The Dirichlet boundary condition is obtained by integrating the 
tangential component of the momentum equation along the boundary. The Neumann boundary condition 
is obtained by applying the normal component of the momentum equation at  the boundary. In this work 
solutions for the Neumann problem exist only if a compatibility condition is satisfied. A consistent finite 
difference procedure which satisfies this condition on non-staggered grids is used for the solution of the 
pressure equation with Neumann conditions. Two test cases are computed. In the first case the velocity field 
is given from the analytical solution and the pressure is recovered from the solution of the associated Poisson 
equation. The computed results are identical for both Dirichlet and Neumann boundary conditions. 
However, the Dirichlet problem converges faster than the Neumann case. In the second test case the velocity 
field is computed from the momentum equations, which are solved iteratively with the pressure Poisson 
equation. In this case the Neumann problem converges faster than the Dirichlet problem. 
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INTRODUCTION 

The pressure Poisson equation plays two distinct roles in the formulation of the incompressible 
Navier-Stokes equations. First, when given the velocity field as in the streamfunction-vorticity 
formulation, the Poisson equation is used to calculate the pressure. Second, when the pressure 
equation is solved iteratively with the momentum equations it is used (1) to calculate the pressure 
and (2) to enforce the continuity equation. 

Traditionally, the pressure Poisson equation is solved with Neumann boundary conditions 
obtained from applying the normal component of the momentum equation at  the boundary. 
Solutions for the Neumann problem require the satisfaction of a compatibility condition (Green's 
theorem) which relates the source of the Poisson equation and the Neumann boundary condi- 
tions. Failure to satisfy this condition results in non-convergent iterative solutions2 because no 
solution exists. Solutions for the Neumann problem are obtained using the consistent finite 
difference method of References 3 and 4 which satisfies the compatibility condition on non- 
staggered grids. 
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The Dirichlet boundary conditions are obtained by integrating the tangential component of 
the momentum equation along the boundary. An excellent discussion on the pressure boundary 
conditions is given in Reference 1. 

Numerical results are obtained for the pressure Poisson equation using both types of boundary 
conditions. The test case considered here is the two-dimensiional inviscid stagnation point flow 
problem. It is chosen because of its analytical solution which facilitates verification of the 
numerical method. Numerical solutions for the pressure equation are obtained using the 
successive over-relaxation method. The computed results, when given the correct velocity field, 
show that the Dirichlet problem converges faster than the Neumann problem using the optimum 
over-relaxation parameter for each case. However, for the case when the pressure equation is 
solved iteratively with the momentum equation, the Neumann problem converges faster than the 
Dirichlet case. 

GOVERNING EQUATIONS 

The incompressible inviscid flow equations are written in Cartesian co-ordinates x and y as 
follows. 

Continuity equation 

u,+ <=o. 

Momentum equations 

u*+uu,-t VU,=-P,: 

v,+uv,+ vv,= -P,. 

Here U ,  V are the velocity components in the x, y directions and P is the pressure divided by the 
density. The subscripts t ,  x, y refer to partial derivatives with respect to time and space. 

Numerical solutions for equations (1H3) can be obtaineld using primitive and non-primitive 
variable formulations.2 For both cases the pressure is computed from a Poisson-type equation 
which is derived from the divergence of the momentum equation. 

Pressure Poisson equation 

equation (3)  with respect to y and adding 
The pressure Poisson equation is derived by differentiating equation (2) with respect to x and 

P,, + P,,, = O  - D,, 

-0 = (UU,  + YU,), +( u v, + VV,), 

(4) 

(44  

D =  u,+ v,. (4b) 

where 

and 

The pressure equation (4) plays two roles in the solution of equations (1H3) using primitive 
and non-primitive variable formulations. 
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Non-primitive variable formulation 

In the non-primitive solutions of equations (1)-(3) the pressure is eliminated from the 
momentum equations (2) and (3). This requires the use of new dependent variables such as 
streamfunction and vorticity. After the velocity field is computed, the pressure is then recovered 
from the solution of equation (4). The unsteady term 0, in this case is eliminated from the right- 
hand side of equation (4) because the continuity equation is already satisfied through the use of a 
streamfunction as in the streamfunction-vorticity formulation or by other means as in the 
velocity-vorticity formulation.' 

Primitive variable formulation 

In this case the momentum equations (2) and (3) are solved for the velocity components U and 
V by marching in time. At each time step the pressure is computed from equation (4), which 
serves two functions: (i) it computes the pressure and (ii) it enforces the continuity equation as 
follows. The unsteady term 0, on the right-hand side of equation (4) is approximated by 

where Dn+l is set equal to zero to satisfy the continuity equation (1) at the time level t+At.' 

BOUNDARY CONDITIONS 

Boundary conditions are discussed with reference to the two-dimensional stagnation point flow 
problem shown in Figure 1. Dirichlet boundary conditions for the velocity field are specified 
along all the boundaries and are obtained from the analytical solution U = x and V= - y. Two 
types of boundary conditions for the pressure are obtained by applying the momentum equations 
(2) and (3) along the boundary contour. 

Neumann boundary conditions 

equation. With reference to Figure 1 the following conditions are used: 
The Neumann conditions are obtained from the normal component of the momentum 

P , = - U U , - V U y  at x = l ,  (64  

Py= -UV,- VV,  at y=O, 1. (6b) 

The symmetry condition is used at x = 0. 

1 
/ / / / / / / f / / / / / / / / / / / / / / / / / / ~  I - 
Figure 1. The inviscid stagnation flow problem 
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Solutions for equation (4) with the boundary conditions equation (6) require the satisfaction of 
a compatibility condition resulting from Green’s theorem. 

Compatibility condition 

where s is the boundary contour enclosing the area of the solution domain A, P,,=n-VP, and n is 
the outward normal to the boundary s. 

Failure to satisfy the compatibility condition (7) results in non-convergent iterative solutions 
for equation (4)2 because no solution exists. The consistent finite difference method of References 
3 and 4, which satisfies the compatibility condition on non-sta.ggered grids, is used to calculate the 
pressure. 

>: - COORD . 
Figure 2. Computed static pressure contours 
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Dirichlet boundary conditions 

of the momentum equation along the boundary for potential flow: 
The Dirichlet conditions for the pressure are obtained by integrating the tangential component 

(8) P =  -$ (U2+  V z )  at y=O, y =  1 and x=  1. 

The symmetry condition is used at x = 0. 

NUMERICAL SOLUTIONS 

Numerical solutions for the pressure Poisson equation (4) with Neumann and Dirichlet boundary 
conditions (6) and (8) are obtained. The Neumann problem is solved using the method of 
References 3 and 4. No special treatment is needed for the Dirichlet problem. The classical 
second-order central finite difference approximations are used to approximate the Laplace 
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Figure 3. Convergence characteristics for (- - -) Neumann, (- . -) incorporated Neumann and (-) Dirichlet boundary 
conditions 
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operator and the source term in equation (4). The method of successive over-relaxation is 
employed in the numerical solutions of equation (4). 

Both roles of the pressure Poisson equation in the formulation of equations (1H3) are 
considered. First, given the velocity field from the analytical solution, the pressure equation (4) is 
solved for the pressure with Neumann and Dirichlet boundary conditions. The computed 
pressure field, which is identical for both Dirichlet and Neumann boundary conditions, is shown 
in Figure 2. The computed results are obtained using 40 x 140 non-staggered grids in the x, y 
directions. The maximum error is less than 2%. 

The convergence characteristics for the Neumann and Dirichlet problems are shown in 
Figure 3 for over-relaxation parameters 1.95 and 1.85 respectively. It can be seen from Figure 3 
that the Dirichlet problem converges faster than the Neumann Problem. Direct incorporation of 
the Neumann boundary conditions in the differential equation at grid points next to the 
boundary is also considered.* It is found that over-relaxation parameters greater than one cause 
divergence, while those less than one cause slow convergence. This option is not recommended 
here because of its poor stability and convergence behaviour as shown in Figure 3. 
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Figure 4. Convergence characteristics for Neumann boundary conditions in the primitive variable formulation: 
(-) u-velocity, (- - -) wvelocity and (- .-) pressure 
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Second, the velocity field is computed from the momentum equations (2) and (3) by marching in 
time using the explicit first-order upwind differencing scheme. A reasonably fine grid (40 x 40 grid 
points) is used here to reduce the artificial viscosity effect introduced by the upwind scheme. The 
pressure equation (4) with Neumann and Dirichlet boundary conditions is solved iteratively at 
each time step. The successive over-relaxation method is used for the numerical solution of 
equation (4), using over-relaxation parameters 1.35 and 1.25 respectively for the Neumann and 
Dirichlet problems. Only one iteration is employed for the solution of the pressure equation at 
each time step, We should mention here that initial conditions for both pressure and velocity are 
set equal to zero except at the boundary. Thus the transient problem is not well posed.' However, 
when the solution converges to the steady state the problem becomes well posed.5 

The computed pressure contours using 40 x 40 grid points are identical with those of Figure 2. 
The convergence characteristics for the velocity and pressure are shown in Figure 4 for the 
Neumann problem. The iteration number in Figure 4 refers to the number of time steps in the 
admittedly meaningless transient. Similar results are shown in Figure 5 for the Dirichlet case. It 
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Figure 5. Convergence characteristics for Dirichlet boundary conditions in the primitive variable formulation: 
(-) u-velocity, (- - -) u-velocity and (- . -) pressure 
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can be seen from Figures 4 and 5 that the Neumann problem converges faster than the Dirichlet 
problem for the primitive variable formulation. 

CONCLUSIONS 

Numerical solutions for the pressure Poisson equation arle identical for both Dirichlet and 
Neumann boundary conditions. This confirms the analytical discussion of Reference 1 on 
pressure boundary conditions, at least for the case studied here. The Dirichlet boundary 
condition requires an additional integration step of the tangential momentum equation along the 
boundary. This inconvenient process might be further complicated by the presence of singular 
points on the boundary. Also, depending on the method of integration, discontinuities in the 
pressure boundary conditions might arise. 

In the non-primitive variable formulations the use of Dirichlet boundary conditions for the 
pressure accelerates the convergence rate. However, the Neumann problem converges faster for 
the primitive variable formulation. 
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